
Microprocessors and Microsystems 39 (2015) 122–134
Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro
A hybrid multiple-character transition finite-automaton for string
matching engine
http://dx.doi.org/10.1016/j.micpro.2015.01.003
0141-9331/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author at: Department of Electrical Engineering, BL-523 National
Taiwan University 1, Roosevelt Road Section 4, Taipei 106, Taiwan. Tel.: +886 2
33663579.

E-mail address: sdwang@ntu.edu.tw (S.-D. Wang).
Chien-Chi Chen, Sheng-De Wang ⇑
National Taiwan University, 1, Roosevelt Road Section 4, Taipei 106, Taiwan

a r t i c l e i n f o a b s t r a c t
Article history:
Available online 17 February 2015

Keywords:
String matching
Deterministic and nondeterministic finite
automaton
Aho-Corasick algorithm
Network intrusion detection system
The throughput of a string-matching engine can be multiplied up by inspecting multiple characters in
parallel. However, the space that is required to implement a matching engine that can process multiple
characters in every cycle grows dramatically with the number of characters to be processed in parallel.
This paper presents a hybrid finite automaton (FA) that has deterministic and nondeterministic finite
automaton (NFA and DFA) parts and is based on the Aho-Corasick algorithm, for inspecting multiple char-
acters in parallel while maintaining favorable space utilization. In the presented approach, the number of
multi-character transitions increases almost linearly with respect to the number of characters to be
inspected in parallel. This paper also proposes a multi-stage architecture for implementing the hybrid
FA. Since this multi-stage architecture has deterministic stages, configurable features can be introduced
into it for processing various keyword sets by simply updating the configuration. The experimental
results of the implementation of the multi-stage architecture on FPGAs for 8-character transitions reveal
a 4.3 Gbps throughput with a 67 MHz clock, and the results obtained when the configurable architecture
with two-stage pipelines was implemented in ASICs reveal a 7.9 Gbps throughput with a 123 MHz clock.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

String matching is used in many applications, such as in net-
work intrusion detection systems (NIDS), and its efficiency domi-
nates the performance of such applications. String matching
typically includes exact string matching and regular expression
matching; exact string matching is more efficient but less powerful
than regular expression matching in searching for keywords in a
text. The string matching algorithm of Aho and Corasick processes
multiple keywords simultaneously, and locates all instances of the-
se keywords in an n-character text with time complexity O(n) [1].
Some applications like NIDS that must inspect a data stream on-
line firstly use exact string matching to filter out suspicious data,
and then use regular expression string matching to verify the fil-
tered out data.

A hardware string-matching engine that is based on the AC-al-
gorithm can effectively accelerate string matching in network
applications [2–5]. However, network bandwidth is increasing as
communication and integrated circuit technologies advance, so
the performance of string-matching engines must also be
improved to keep up with network throughput. Greatly increasing
throughput in string matching depends on developing a hardware
string-matching engine that can inspect multiple characters in
parallel.

A string matching engine that is based on the AC-algorithm can
be implemented in two ways: the first uses a deterministic finite
automaton (DFA) and the second uses a nondeterministic finite
automaton (NFA). In the DFA approach, a generalized architecture
can be developed for processing various sets of keyword. This
architecture is deterministic. Accordingly, the generalized archi-
tecture based on the DFA approach can be designed as a standalone
device, which can be utilized for various keyword sets. However,
the hardware efficiency of the DFA approach is poor, and the
required space typically increases exponentially with the number
of characters that are being inspected in parallel. The NFA approach
is more efficient than the DFA approach in terms of hardware uti-
lization, and the required space increases in proportional to the
number of characters that are being inspected in parallel.
Nevertheless, the hardware architecture varies with keyword sets
in the NFA approach; accordingly, the NFA approach can be imple-
mented only in programmable devices, such as FPGAs.

This paper proposes a hybrid approach, based on the AC-algo-
rithm, that combines the NFA and DFA methods to provide the
advantages of both hardware efficiency and a deterministic
architecture. The proposed approach transforms an AC-trie, which

http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2015.01.003&domain=pdf
http://dx.doi.org/10.1016/j.micpro.2015.01.003
mailto:sdwang@ntu.edu.tw
http://dx.doi.org/10.1016/j.micpro.2015.01.003
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro


C.-C. Chen, S.-D. Wang / Microprocessors and Microsystems 39 (2015) 122–134 123
is a prefix tree that is based on the AC-algorithm, into a hybrid
finite automaton, called AC-FA, that has NFA and DFA parts. The
proposed hybrid AC-FA is converted into a multi-character hybrid
AC-FA by iteratively performing concatenation operations, for the
purpose of processing multiple characters in parallel. We have pre-
viously developed the algorithm for deriving multi-character tran-
sitions [6,7]. The states in an AC-trie with the same depth are
grouped in the same level, and a level nearer to the root state is
lower; the NFA part comprises the lower states. Since most states
of an AC-trie are at lower levels, which belong to the NFA part, the
growth of the number of transitions of a k-character AC-FA is
almost linear with respect to k when the number of level in the
NFA part is high enough.

This paper then develops a multi-stage architecture for imple-
menting the proposed hybrid AC-FA. The transitions are grouped
into stages based on their levels. The number of stages of the pro-
posed multi-stage architecture is determined by the number of
levels in the NFA part and the number of characters to be inspected
in parallel. Since the number of stages can be determined as
required, the proposed multi-stage architecture is further made
into a configurable architecture that can be configured to process
various keyword sets. The proposed configurable architecture can
be utilized as a stand-alone device.

The proposed architecture is evaluated on FPGA and ASIC
devices. The results of the evaluation reveal that the throughput
and the hardware cost increase approximately linearly with
respect to the number of characters to be inspected in parallel. In
the implementation of k-character multi-stage architecture, for
k ¼ 8, the throughput is approximately 6.1 times and the hardware
cost is approximately 2.7 times those for k ¼ 1. The 8-character
hybrid AC-FA with 300 keywords can be implemented with a
66.6 MHz clock and the achieved throughput is approximately
4.3 Gbps. The 8-character configurable architecture, including
512 rule units, can be implemented with a 54.18 MHz clock and
the obtained throughput is approximately 3.5 Gbps. The proposed
configurable architecture is also improved using the pipeline
method. The 8-character configurable architecture with two-stage
pipelines can be implemented at a clock rate of 123.44 MHz and
the obtained throughput is approximately 7.9 Gbps, and the per-
formance is roughly doubled that of the original configurable
architecture. The main contributions of this paper are summarized
as follows.

– The proposed multi-character hybrid AC-FA approach has the
feature that the number of transitions increases almost linearly
with respect to the number of characters to be inspected in
parallel.
– A configurable architecture is developed, based on the pro-
posed multi-stage architecture; it can process various keyword
sets by simply updating the configuration data.

The rest of this paper is organized as follows. Section 2 reviews
work on string matching. Section 3 briefly describes the AC-algo-
rithm, and then develops the hybrid AC-FA and its implementation.
Section 4 describes the construction of multi-character transitions
and proposes a multi-stage architecture to implement the con-
structed multi-character transitions. Section 5 proposes the config-
urable architecture of the multi-character matching engine.
Section 6 evaluates and discusses the proposed approach. Finally,
Section 7 draws conclusions.
2. Related work

Many hardware-based approaches that are based on the AC-al-
gorithm have been developed for accelerating string matching and
these fall into two broad categories. One category focuses on
improving the efficiency of hardware utilization because the AC-al-
gorithm is a memory-exhausting algorithm, while the other focus-
es on improving the throughput of string matching, by increasing
the clock rate of the hardware or by inspecting multiple characters
simultaneously.

Owing to the progress and flexibility of the programmable
devices such as FPGAs, developers can design and evaluate variant
architectures according to the features of the AC-algorithm.
However, the resources of programmable devices are limited, so
hardware efficiency is important. To improve the memory efficien-
cy, Tuck et al. proposed a bitmap-compression and path-compres-
sion approach to implement the AC-algorithm that effectively
reduces the required memory and improves the performance of
hardware implementation [8]. Zha and Sahni improved the bit-
map-compression and path-compression approach such that it uti-
lized much less memory [9]. Alicherry et al. implemented the AC-
algorithm by integrating a ternary content addressable memory
(TCAM) and an SRAM that utilizes the ternary matching of TCAM
to match characters in negation expressions, subsequently reduc-
ing the space that is required for storing the state transitions [3].
Pao et al. and Lin and Liu developed pipeline architectures to imple-
ment an AC-trie that contains only goto functions of the AC-trie to
reduce the space that is caused by extending failure functions
[10,11]. Nan Hua et al. proposed another approach that was based
on a block-oriented scheme, rather than the typical byte-oriented
processing of patterns, to minimize the memory-usage [4]. The
approach of Dimopoulos et al. partitions an entire AC-trie into
numerous smaller tries to increase memory efficiency [12].
Nakahara improved the hardware efficiency of the implementation
of regular expression matching by using the AC-algorithm to pro-
cess shared patterns [2]. Becchi et al. presented a hybrid FA that
combines the advantages of DFA and NFA to improve regular
expression matching [13].

To multiply the throughput of string matching for a fixed same
operating rate, some attempts have been made to develop string
matching architectures that can inspect multiple characters in par-
allel. Such an architecture must account for both the complexity of
hardware and the alignment problem, which arises in the k-char-
acter matching processes. Sugawara et al. developed a string
matching method called suffix-based traversing (SBT), which
extends the AC-algorithm to process multiple input characters in
parallel and to reduce the size of the lookup table [14]. Alicherry
et al. proposed a k-compressed AC-DFA to realize a k-character
matching engine [3]. Some works have utilized multiple FSMs to
achieve parallelism and solve the alignment problem; in these,
each FSM processes a pattern, beginning at a different position,
and then the matching results of the FSMs are combined using a
specific logic [5,15,16]. Yamagaki et al. utilized additional states
and transitions to solve the alignment problem [17].
3. Aho-Corasick algorithm and hybrid finite automaton

This section firstly describes the AC-algorithm. Then the origi-
nal AC-trie is converted to a hybrid AC-FA which comprises an
NFA part and a DFA part. Thereafter, the operations of the original
AC-trie and the proposed hybrid AC-FA are explained and com-
pared with each other. Finally, the proposed hybrid AC-FA is
extended to a multi-character hybrid FA.
3.1. Aho-Corasick algorithm

The AC-trie that is shown in Fig. 1 is constructed with the key-
word set {enhappy, happy, happen, happygo}, which is used as an
example to explain the proposed approach. In the figure, the



Fig. 1. Example of AC-trie. Fig. 2. Hybrid AC-FA.

124 C.-C. Chen, S.-D. Wang / Microprocessors and Microsystems 39 (2015) 122–134
circled numbers indicate states and the double-circled numbers
indicate output states with non-empty matching outputs. The phy-
sical lines represent goto functions and the dashed lines represent
failure functions. State 0 is the initial state. Every non-initial state
has a failure function, and for clarity, the failure functions that are
linked to the initial state are omitted.

In a matching cycle, the goto functions of the active state are
checked first. If none of the goto functions is matched, then the
active state transits to the state that is pointed to by the failure
function of the current active state and the goto functions of the
new active state are checked immediately. These steps are repeat-
ed until a goto function is matched. The fact that all non-initial
states are eventually linked to the initial state through failure func-
tions and the initial state has the goto functions for all characters in
the character set ensures that a matched goto function can be
found in every operating cycle. Later, the matching operation of
the AC-trie will be discussed and compared with that of the pro-
posed hybrid AC-FA with reference to an example.

In an AC-trie, each state represents a unique string. The linking
of state S1 to state S2 by a failure function reflects the fact that the
string that is represented by S2 is the postfix of the string that is
represented by S1. In the case in which a failure function links state
4 to state 9, which represent ‘enha’ and ‘ha’ respectively, the string
‘ha’ is the postfix of ‘enha’. Using failure functions, the AC-algo-
rithm can locate all instances of keywords in a text string in a sin-
gle-pass search.

However, the failure function may cause multiple transitions
when an input character is being processed, making implementa-
tion inconvenient. Therefore, an AC-trie generally is converted into
a deterministic finite automaton (DFA), called an AC-DFA, to sim-
plify the implementation. After an AC-trie has been converted into
an AC-DFA, only one transition is activated and one state has to be
kept in every matching cycle; this deterministic property facilitates
a simple implementation. Since the number of transitions increas-
es rapidly after an AC-trie is converted into a DFA, its space utiliza-
tion is inefficient. Alternatively, an AC-trie can be converted into a
nondeterministic finite automaton (NFA), called an AC-NFA, by
simply removing the failure functions and allowing multiple states
to be activated simultaneously. Although the implementation of an
AC-trie as an AC-NFA utilizes space efficiently, its circuit must nor-
mally be regenerated once the set of keywords changes.

3.2. Hybrid AC-FA

To develop a general architecture for implementing the AC-trie
that minimizes the number of transitions, a hybrid finite automa-
ton that is based on the AC-algorithm (hybrid AC-FA) that includes
both DFA and NFA parts is developed. Fig. 2 shows a hybrid AC-FA
that is obtained by converting the AC-trie in Fig. 1. In the NFA part,
all of the failure functions are removed and only the goto functions
are retained. In the DFA part, the failure functions are replaced
with expanding goto functions. In a hybrid AC-FA, the number of
NFA levels is defined as the total number of levels except that of
the root state in the NFA part. For example, the hybrid AC-FA in
Fig. 2 has three NFA levels. Notably, states 4 and 11 are in the
DFA part.

Next, an algorithm for obtaining the transitions of a hybrid AC-
FA is presented. For convenience of discussion, let a k-character
transition, defined as dkðS1; TÞ ¼ S2, represent a transition from
the current state S1 to the next state S2 on the k-character string
T. Therefore, a transition of the hybrid AC-FA is denoted as
d1ðS1; cÞ ¼ S2, which represents a transition from state S1 to state
S2 on character c.

Algorithm 1 is a generalized algorithm for deriving the transi-
tions of a hybrid AC-FA from an AC-trie. In this algorithm, the input
parameter NNFA is the number of NFA levels. The parameter NNFA is
used to determine whether a state is in the NFA part or in the DFA
part. The other two parameters, G and F, are the set of goto func-
tions and the set of failure functions respectively. The output vari-
able NXSET is the set of resulting 1-character transitions of the
hybrid AC-FA.

Algorithm 1. Algorithm for deriving transitions of a hybrid AC-FA
In line 1, NXSET is initialized. Statements in the loop between
lines 3 and 6 copy all of the goto functions to NXSET. Statements
in the loop between lines 7 and 18 extend the transitions of the
states in the DFA part following the failure functions. Whether a
state is in the DFA part is checked by determining whether its level
exceeds the parameter NNFA.



C.-C. Chen, S.-D. Wang / Microprocessors and Microsystems 39 (2015) 122–134 125
In line 8, the state that is pointed to by the failure function of
the processing state Si is assigned to Sj. If Sj is in the DFA part, then
the process enters the loop between lines 10 and 17. In the loop
between lines 12 and 15, all of the goto functions of Sj are convert-
ed to the transitions of Si and then added to NXSET. In line 15, Sj is
updated with the state that is pointed to by its own failure func-
tion. The loop between lines 10 and 17 is repeated until Sj is not
in the DFA part.
3.3. Matching operations

The matching operations of the original AC-trie and the hybrid
AC-FA are explained and compared using the examples that are in
Fig. 3. Fig. 3a and b show the matching processes of the original AC-
trie and the hybrid AC-FA, respectively. The inspected text in all of
these matching examples is ‘enhappenhappygo’.

First, the matching operation of the original AC-trie is discussed.
In response to the characters ‘enhapp’, the transition traverses
through the states 0, 1, 2, 3, 4, and 5 sequentially. In response to
the seventh character ‘e’, none of the goto functions of state 6
matches this character, so the state transits to 11 according to
the failure function of state 6 and the operation continues to match
the goto functions of state 11. In response to the subsequent char-
acter ‘n’, the state transits to 14, which is an output state and a
matching output, ‘happen’, is obtained. State 14 is a terminal state,
so based on its failure function, the state transits to 2 when the
next character is input and the matching process proceeds from
state 2. Similarly, in response to the remaining characters, the tran-
sition passes through states 3, 4, 5, 6, 7, 12, 15, and 16 sequentially,
where the transition from 7 to 12 is a transition that is determined
by the failure function of state 7. The remaining matching opera-
tion yields matching outputs at states 7 and 16, which are ‘enhap-
py happy’ and ‘happygo’, respectively.

Next, the matching operation of the hybrid AC-FA is explained
with reference to Fig. 3b. For clarity, the explanation focuses on
the operations that differ from those of the original AC-trie. In this
example, the states in the DFA part are underlined. As can be seen,
multiple states can be activated simultaneously in the NFA part,
while only the deepest state remains to be activated in the DFA
part. In response to the characters ‘enhappen’, a transition
sequence from 0 to 6 followed by 13 and 14, is generated. After
the third character ‘h’, another transition sequence begins, and
continues until state 11 is reached. Since 11 and 6 are the states
in the DFA part, only the deeper state 6 can be active. These two
transition sequences are merged into one and the matching
Fig. 3. Matching examples of A
operation proceeds to state 6. This transition sequence ends at
state 14 with a matching output, which is ‘happen’. When the
matching operation proceeds to the second ‘e’ character, the third
transition sequence begins. As in the description above, the fourth
transition sequence begins on the second ‘h’ character and merges
with the third transition sequence at state 11. The third transition
sequence has matching outputs at states 7 and 16.

Comparing Figs. 3a and b indicates that, in every matching
cycle, when a non-initial state is activated, all of the states in the
NFA part that are linked from the active state through the failure
functions are activated simultaneously. Hence, failure functions
are not required in the NFA part when multiple states can be acti-
vated simultaneously.
3.4. Implementation of hybrid AC-FA

The AC-NFA has a property that is the basis for developing the
multi-stage architecture of the proposed hybrid AC-FA. An NFA
that is derived from a given AC-trie has no more than one active
state among states of equal depth. For convenience, states with
the same depth are grouped in the same level. The states with
the same depth represent a set of strings of the same length, so
no more than one state in a level can be activated at one time.
Consequently, only one register is required for saving the active
state per level in the NFA part. As a result, the number of registers
that are required to keep the active states in matching operations
can be determined by the number of levels in the NFA part.

Fig. 4 shows the multi-stage architecture of the hybrid AC-FA.
Stages 1 through 4, which are associated with the NFA part, include
the transitions of levels 0 through 3, respectively. Stage 5, the termi-
nal stage, is associated with the DFA part and includes all of the tran-
sitions of the DFA part. Since no more than one state can be activated
in each stage, priority multiplexer PMUX0 determines the next state
for the terminal stage from states NX[4] and NX[5], which are out-
put from stages 4 and 5, respectively. The next state NX[i] that is
generated by the i-th stage represents the matching result of that
stage. The priority multiplexer PMUX1 obtains the final matching
output from the matching results NX[1] through NX[5].

A priority multiplexer accepts multiple inputs and selects a
valid input with the highest priority as the output; if none of the
inputs is valid, then a default value, typically zero, is output. In
the priority multiplexer, an input in a higher position has a higher
priority so, for example, input D[1] has the highest priority.

Fig. 5 shows the block diagram of a stage unit. A stage unit
includes multiple rule units, each of which is responsible for
C-trie and hybrid AC-FA.



Fig. 4. Implementation of hybrid AC-FA.

Fig. 5. Block diagram of a stage unit.

Fig. 6. Assistant transitions.

126 C.-C. Chen, S.-D. Wang / Microprocessors and Microsystems 39 (2015) 122–134
matching one transition. Therefore, the number of rule units in a
stage must be greater than or equal to the number of transitions.
A rule unit contains information about its corresponding transition
and matches that information with the input current state CUR_ST
and character IN_CHAR in the matching operation. A rule unit is
triggered when its pattern is matched with the inputs and it then
outputs the next state NX[i], as determined by its information.

4. Multi-character hybrid AC-FA

This section firstly explains how to derive multi-character tran-
sitions from a hybrid AC-FA with reference to examples. Next, a
multi-character hybrid AC-FA is constructed using the derived
multi-character transitions. Then, the implementation of the
derived multi-character hybrid AC-FA is elucidated. Finally, an
illustrative example is provided to elucidate the matching opera-
tion of the proposed multi-character hybrid AC-FA.

The alignment problem, which must be addressed in the deriva-
tion of multi-character transitions, arises in two cases: in one, a
pattern does not begin at the first character of the inspected char-
acters, whereas in the other, a pattern does not end at the final
character of the inspected characters.

Considering the keyword ‘happen’, and the inspection of three
characters in parallel; two 3-character transitions d3(0, hap) = 10
and d3(10, pen) = 14 can be obtained intuitively. When the text ‘en-
happens’ is taken as the input, and split into three chunks, ‘enh’,
‘app’, and ‘ens’ for inspection, the keyword ‘happen’ cannot be
found using the above two obtained transitions in this text because
it begins at the third character of the first chunk and ends at the
second character of the third chunk.

4.1. Derivation of multi-character transitions

In the proposed approach, multi-character transitions are
derived from an AC-trie by concatenating multiple successive
transitions. Three types of assistant transition are defined to solve
the alignment problem that arises in the derivation of multi-charac-
ter transitions. Fig. 6 illustrates examples of such assistant
transitions.

The assistant transitions are indicated by dashed lines, to distin-
guish them from the normal transitions. In Fig. 6, the circled symbol
‘–’ represents a pseudo state and the symbol ‘?’ represents an arbi-
trary character. The pseudo state is a virtually defined state that
does not actually exist in the AC-trie. The first type of assistant tran-
sition d1(0, ?) = 0 (Fig. 6a) solves the alignment problem when the
beginning of a pattern is not at the first of the inspected characters.
The second type of assistant transition (i.e., d1ðSop, ?) = –) preserves
the matching output when a pattern does not end at the final char-
acter of the inspected characters. The transitions that begin from
states 7, 12, 14, and 16 and end at pseudo states are assistant tran-
sitions of the second type (Fig. 6c). An assistant transition of the sec-
ond type solves the alignment problem when a pattern does not end
at the final inspected character. An assistant transition of the third
type (i.e., d1(–, ?) = – (Fig. 6b)) can follow an assistant transition of
the second type to complete a multi-character transition.

Fig. 7 shows examples of the derivation of 3-character transi-
tions using concatenation operations. In the figure, ‘+’ indicates a
concatenation operation. These examples also clarify the use of
assistant transitions in the derivation.

First, with reference to Fig. 7a, concatenating two assistant tran-
sitions d1(0, ?) = 0 yields a 2-character transition d2(0, ??) = 0; then,
concatenating the deriving transition with d1(0, e) = 1 and d1(0,
h) = 8, respectively, yields two 3-character transitions d3(0,
??e) = 1 and d3(0, ??h) = 8. Although a 3-character transition d3(0,
???) = 0 can be obtained by concatenating the transition d2(0,
??) = 0 with another d1(0, ?) = 0, it is discarded because it is useless.
The transitions d3(0, ??e) = 1 and d3(0, ??h) = 8 imply that state 0 is
retained for the first two characters and then transits to state 1 or 8
on the third character ‘e’ or ‘h’. These derived transitions are thus
utilized to solve the alignment problem that arises from the situa-
tion in which the first character of a keyword appears is the third
inspected character.

In the example in Fig. 7b, state 6 has two goto functions, d1(6,
y) = 7 and d1(6, e) = 13. Concatenating d1(6, y) = 7 with two assistant



Fig. 7. Examples of concatenating operations.

C.-C. Chen, S.-D. Wang / Microprocessors and Microsystems 39 (2015) 122–134 127
transitions d1(–, ?) = – yields a 3-character transition d3(6, y??) = –,
and concatenating d1(6, y) = 7 with d1(7, g) = 15 and d1(15, o) = 16
yields another 3-character transition d3(6, ygo) = 16. Concat enating
d1(6, e) = 13 with d1(13, n) = 14 and d1(–, ?) = – yields a 3-character
transition d3(6, en?) = –. States 7 and 14 are output states; state 14 is
also a terminal state. Both states 7 and 14 are concatenated with
assistant transitions to form complete 3-character transitions to
preserve the matching outputs. Since the trailing two characters of
the pattern in transition d3(6, y??) = – are wildcard characters, the
transition is always triggered along with the transition d3(6,
ygo) = 16; such a conflict is resolved by using a priority multiplexer.

The described concatenation operation enables the k-character
transitions with any required k value to be derived. If all of the levels
of an AC-trie are in the NFA part, such that the hybrid AC-FA
becomes an AC-NFA, then the number of derived k-character transi-
tions is proportional to k. For a given AC-NFA with r1 1-character
transitions and nop output states, the number of k-character transi-
tions is rk ¼ r1 þ ðk� 1Þ � nop. In the above example, the 1-charac-
ter AC-NFA has 16 transitions and four output states, so the derived
3-character AC-NFA has 16þ ð3� 1Þ � 4 ¼ 24 transitions.

Algorithm 2 is a generalized algorithm for deriving multi-char-
acter transitions from an AC-trie. In this algorithm, the input para-
meter k is the number of characters to be inspected in parallel. The
input parameter NXSET is the set of original 1-character transitions,
derived according to Algorithm 1. The output variable TRSET is the
set of resulting k-character transitions. By using multiple-level
iterations, this algorithm derives the k-character transitions for
every state in the original AC-trie.

Algorithm 2. Algorithm for deriving k-character transitions
In line 1, TRSET is initialized. The loop between line 3 and line 21
derives all of the k-character transitions of every state Si. In line 5,
the 1-character transitions of state Si are duplicated to variable
NSET. The loop between line 7 and line 19 is performed k� 1 times,
in which the 1-character transitions of Si are iteratively
concatenated with their successive 1-character transitions to
derive the k-character transitions of Si. After executing the loop,
NSET contains all of the k-character transitions of Si. In line 20,
NSET is added to TRSET. The algorithm then returns to line 5 to pro-
cess the next state immediately. The algorithm is terminated when
all of the states have been processed. Finally, TRSET contains the
derived k-character transitions.

Now, consider the loop between lines 7 and 19. In line 8, TMPS is
initialized. In the loop between lines 10 and 17, every transition
NXi in NSET is expanded. In line 11, the next state of NXi is assigned
to Sj. In the loop between lines 13 and 16, NXi is concatenated with
every transition NXj, beginning from Sj, to generate new transi-
tions. In line 14, NXi is concatenated with NXj to obtain a new tran-
sition NTR, and then in line 15, NTR is added to TMPS. The number
of the pattern characters of NTR is one more than the number of
pattern characters of NXi.

Since the intermediate state is concealed after two transitions
have been concatenated, the matching outputs must be reserved
in the concatenation operation in line 14. Moreover, some transi-
tions consisting of all assistant transitions that may be obtained
in the concatenation process are not useful and are subsequently
removed in line 22.

Fig. 8 depicts the complete 3-character hybrid AC-FA, construct-
ed using the procedure that is described above. The transitions in
the NFA part are depicted as three disjoint NFAs, each of which
deals with a particular case of alignment. The nodes of the 3-char-
acter hybrid AC-FA are arranged according to their levels in the ori-
ginal AC-trie to clarify their relationship.
4.2. Implementation of multi-character hybrid AC-FA

This section develops a multi-stage string-matching architec-
ture for implementing the derived multi-character hybrid AC-FA.
Fig. 9 shows a block diagram of the proposed architecture for
implementing a 3-character hybrid AC-FA that is derived from
the example in Fig. 2. The inspected text is split into chunks of
three characters, which are fed one at a time, through the input
IN_CHRS into the string matching engine.

The number of stages, L, is determined by the number of NFA
levels NNFA and the number of characters to be inspected in parallel
k : L ¼ NNFA þ kþ 1. In the presented example, the NFA-level is
NNFA ¼ 3 and the number of characters to be inspected in parallel
is k ¼ 3, so the number of stages L ¼ 3þ 3þ 1 ¼ 7.

Stages 1 through 6 are arranged in three chains, each of which
deals with an alignment case. Stage 1, the first stage in the first
chain, deals with the case in which the first character of a pattern
is the third character of the input chunk, so the preceding two
characters of the transitions are both wildcard characters.



Fig. 8. The derived 3-character hybrid AC-FA.

Fig. 9. Block diagram of the multi-stage string matching architecture.

128 C.-C. Chen, S.-D. Wang / Microprocessors and Microsystems 39 (2015) 122–134
The transitions of the DFA part are all in stage 7, which is the
terminal stage. All of the next states that are determined by the
final stages of the three chains, which are stages 4–6, traverse into
stage 7. Since no more than one state can be activated at a time in
each stage, the priority multiplexer PMUX0 determines the next
state for stage 7 from the next states, NX[4] through NX[7], which
are output from stages 4 through 7. The transitions in the later
stage correspond to the states at the deeper level of the AC-trie,



C.-C. Chen, S.-D. Wang / Microprocessors and Microsystems 39 (2015) 122–134 129
so the next state that is determined by a later stage has a higher
priority, so for example, the next state NX[7] that is determined
by stage 7, which is the terminal stage, has the highest priority.

Since multiple transitions may be triggered simultaneously, the
transitions in each stage are arranged by priority such that a tran-
sition with a higher priority has a higher position in the block dia-
gram. For example, transition d3(6, y??) = – is always triggered
when the transition d3(6, ygo) = 16 is triggered, so the former has
a lower priority. However, if two transitions are never triggered
simultaneously, then their priorities are unimportant.

The final matching outputs are determined from the results of
stages using priority multiplexers. Fig. 10 shows the priority mul-
tiplexer that is used to determine the final matching output OP[i]
that corresponds to the i-th inspecting character. In the presented
example, three priority multiplexers are required to determine
three matching outputs – one for each.

Fig. 11 shows a block diagram of a stage unit. A stage unit
includes multiple rule units, each of which is responsible for
matching one transition. Therefore, the number of rule units must
be at least the number of transitions in each stage. A rule unit con-
tains the information about its corresponding transition and
matches this information with the input current state CUR_ST
and characters IN_CHRS when the matching operation is per-
formed. A rule unit is triggered when its pattern is matched with
Fig. 10. Matching output circuit.

Fig. 11. Block diagram of a stage unit.
the inputs and it then outputs the next state NX and the matching
outputs OP[1] through OP[3], as determined by its information.

4.3. Matching example

To demonstrate the effectiveness of the proposed approach,
Fig. 12 shows an example of the matching process. The input text
in this example is ‘enhappenhappygo’, which is split into chunks of
three characters, which are processed in order in five matching
cycles. In the first cycle, in response to the input ‘enh’, the transi-
tions d3(0, ??h) = 8 in stage 1 and d3(0, enh) = 3 in stage 3 are trig-
gered. Neither transition has a matching output so no matching
output exists in this cycle. The next states that are determined in
stages 1 and 3 are sent to stages 4 and 6, respectively.

In the second cycle, the input ‘app’ and the next states that were
determined in the preceding cycle trigger the transitions d3(8,
app) = 1 in stage 4 and d3(3, app) = 6 in stage 6, which determine
next states 11 and 6, respectively. Both states 11 and 6 are in the
DFA part and the latter is at the greater depth, so state 6 is pre-
served and sent to stage 7. The matching outputs are all empty
in this cycle.

In the third cycle, the input ‘enh’ and the next states that were
determined in the preceding cycle trigger the transitions d3(6,
en?) = – in stage 7, d3(0, ??h) = 8 in stage 1, and d3(0, enh) = 3 in
stage 3. The transition d3(6, en?) = – determines that the matching
output that corresponds to the second input character is 14 or
‘happen’.

In the fourth matching cycle, the input characters ‘app’ and the
next states that were determined in the preceding matching cycle
triggered transitions d3(8, app) = 1 in stage 4 and d3(3, app) = 6 in
stage 6. Priority multiplexer PMUX0 selects the next state that
was determined by stage 6, which is 6, and sends it to stage 7.
The matching outputs are all empty strings in this cycle.

In the fifth matching cycle, two transitions in stage 7, which are
d3(6, ygo) = 16 and d3(6, y??) = –, are triggered in response to the
input characters ‘ygo’ and the next states that were determined
in the preceding matching cycle. The transition d3(6, ygo) = 16
has a higher priority so it causes the next state to be 16 and the
matching outputs that correspond to the three input characters
are 7, 0, and 16 in this matching cycle. The first and third matching
outputs, 7 and 16, correspond to the keywords ‘enhappy happy’
and ‘happygo’ respectively.
5. Configurable string-matching architecture

The numbers of rules vary among the stages in the proposed
multi-stage string matching architecture. Additionally, the rules
in each stage vary with the keyword set. Hence, the proposed mul-
ti-stage architecture is difficult to design and manufacture as a
stand-alone device for various applications. However, the number
of stages can be predetermined by the specific requirements that
must be met – which are the number of levels in the NFA part
and the number of characters to be inspected in parallel.
Therefore, the proposed multi-stage architecture can be devised
as a configurable architecture to provide flexibility in applications.
In this configurable architecture, all rule units are grouped together
and each can be dynamically allocated to a different stage by set-
ting its own rule data. Consequently, this configurable architecture
can process various keyword sets by simply updating the rule data.

Fig. 13 shows the main block diagram of the proposed config-
urable architecture, which includes rule, state, and output circuits.
All rule units are grouped together in the rule circuit, in which each
rule unit processes a transition. A rule unit can be allocated to a
particular stage based on its own rule data. Each rule unit has reg-
isters that save rule data, which can be updated using the input
SET_IN. The state circuit determines the next states of the stages,



Fig. 12. Example of a matching process.

Fig. 13. Main block diagram of the configurable architecture.

Table 1
Example of transition rules.

STG Pattern data Output data

TMSK P_ST P_CHRS OMSK NX_ST OP1 OP2 OP3

0 0001 0 ??e 1001 1 – –
0 0001 0 ??h 1001 8 – –

�
4 1111 1 nha 1111 4
4 1111 8 app 1111 11

�
7 1111 11 ygo 1111 16 12 16
7 1100 11 y?? 0100 – 12 – –

�

130 C.-C. Chen, S.-D. Wang / Microprocessors and Microsystems 39 (2015) 122–134
and the next states thus determined are looped back to the rule cir-
cuit as current states in the following matching cycle. The output
circuit determines the final matching outputs that correspond to
the inspected characters in the matching results output by all rule
units.
5.1. Rule unit

Fig. 14 shows the block diagram of a rule unit. The rule data for
each rule unit include stage information that is used to determine
to which stage the rule unit belongs. Based on the stage informa-
tion, the multiplexer selects the corresponding input state and
the demultiplexer sends the resulting next state to the correspond-
ing output.
Fig. 14. Rule unit of the configurable architecture.
Each rule unit has registers to store the rule data associated
with a transition. Table 1 presents some examples of transition
rules. The rule data include a stage number, pattern data, and out-
put data. The multiplexer MUX selects one of the inputs, 0 and
NX[1] through NX[4], as the current state CUR_ST, based on the
stage number STG. The comparator COMP compares the two
inputs, IN_CHRS and CUR_ST, with the pattern data, and then out-
puts the matching result as signal EQ. The signal EQ is true when
the inputs are matched with the pattern data; otherwise it is false.
The four AND gates determine the outputs of the rule unit based on
the signal EQ and the rule data OMSK, NX_ST, and OP1 through
OP3.

The transition rules are now explained in detail with reference
to the examples in Table 1. The first field, STG, contains the stage
number. The remaining fields can be roughly separated into fields
for pattern data and fields for output data. The pattern data include
the ternary mask TMSK, the current state P_ST, and the pattern
characters P_CHRS. The output data include the output mask
OMSK, the next state NX_ST, and the matching outputs OP1
through OP3. The pattern data of a rule are compared with the
input characters and the current state; if the result of the compar-
ison is a match, then the rule is activated and the output data are
sent out. The matching outputs OP1 through OP3 correspond to the
first through third characters of P_CHRS, respectively.

Each bit of the ternary mask TMSK determines whether the cor-
responding pattern should be compared with the corresponding
input or not. For instance, the bits of TMSK, from the most sig-
nificant bit (MSB) to the least significant bit (LSB), correspond to
the current state P_ST and the first to third characters of P_CHRS,
respectively. A pattern is compared with its corresponding input
when the corresponding ternary mask bit is ‘1’; otherwise the



C.-C. Chen, S.-D. Wang / Microprocessors and Microsystems 39 (2015) 122–134 131
pattern is do not-care. For instance, in the two rules of stage 1, bits
3 through 1 of TMSK are all ‘0’, and, meaning that P_ST and the first
and second characters of P_CHRS are do not-care. Each bit of OMSK
determines whether the corresponding output value is valid or not.
Specifically, the bits of OMSK, from the MSB to the LSB, correspond
to the next state NX_ST, and the matching outputs OP1 through
OP3, respectively. For example, in the final rule, bit 3, bit 1, and
bit 0 of OMSK are all ‘0’, so NX_ST, OP2, and OP3 are not valid;
accordingly, when this rule is activated, it affects neither the next
state nor the matching outputs that correspond to the second and
third input characters.

The examples of rules in Table 1 are d3(0, ??e) = 1 and d3(0,
??h) = 8, which are two rules in stage 1; d3(1, nha) = 4 and d3(8,
app) = 11, which are two rules in stage 4, and d3(11, ygo) = 16
and d3(11, y??) = –, which are two rules in stage 7. Stage 7 is the
terminal stage and is in the DFA part. In the table, ‘–’ represents
a do not-care output, while in practical implementation, the
matching output is determined by the corresponding bit of
OMSK. In each stage, the rules are arranged in order of priority. If
multiple rules are triggered at the same time then a higher one
has a higher priority. For instance, the two example rules in stage
7, d3(11, ygo) = 16 and d3(11, y??) = –, may be triggered simultane-
ously and the former has a higher priority in determining the next
state and the matching outputs.

In the rule table, when a matching output is valid, it is
expressed as a state number if the state is a non-initial state; other-
wise, it is blank. For example, in the first rule of stage 7, the output
OP1 is 12, which represents the string ‘happy’, and the output OP3
is 16, which represents the string ‘happygo’.

5.2. State and output circuits

The circuits for determining the next states NX[1] through
NX[3] are identical; each is implemented by a priority multiplexer,
as shown in Fig. 15. The circuit for determining the next state
NX[4] is composed of two levels of priority multiplexers, as shown
in Fig. 16. The priority multiplexers PMUX4 through PMUX7 deter-
mine the next states from the matching results that correspond to
stages 4 through 7 and then PMUX8 determines NX[4] from the
Fig. 15. State circuit for stages 1–3 of the configurable architecture.

Fig. 16. State circuit for the terminal stage of the configurable architecture.
results of PMUX4 through PMUX7. The output circuit is composed
of multiple priority multiplexers, each of which has a block dia-
gram that is similar to the block diagram that is shown in
Fig. 10. The priority multiplexers must have M inputs, consistent
with the M rule units here. Hence, the details of the output circuit
are omitted.

The proposed configurable matching engine can be manufac-
tured as a standalone chip. Accordingly, when the set of processing
keywords is changed, only the transitions have to be regenerated
according to the new keyword set, and the rule data of the units
are updated by the newly generated transitions. Owing to its flex-
ibility, the proposed configurable matching engine can be imple-
mented in ASICs and is not limited to FPGAs. However, a trade-
off must be made between flexibility and performance. When the
proposed configurable matching engine is flexible, the circuit
becomes complicated and the performance is worsened.
Nevertheless, advanced semiconductor technologies can compen-
sate for this degradation in performance.
6. Evaluation and discussion

This section firstly compares the numbers of multi-character
transitions with various NFA levels. Next, the proposed architec-
tures are implemented in FPGA and ASIC devices to evaluate the
hardware resources required for implementations and to estimate
the achievable throughput. Finally, the results herein are compared
with those obtained elsewhere.
6.1. Transitions versus NFA levels

In the evaluation of the number of multi-character transitions
for various number of levels in the NFA part, 1,000 keywords,
retrieved randomly from SNORT rules, are used [18]. The numbers
of k-character transitions in cases with k = 1, 4, and 8, and NFA
levels of 1–15, are determined. Fig. 17 plots the relationship
between the number of transitions and the number of levels in
the NFA part. The number of goto functions is 10,157 and the num-
ber of non-empty output states is 1130, so the number of transi-
tions is 10;157þ ðk� 1Þ � 1130 for a k-character AC-NFA.
Dashed lines represent the numbers of transitions of the k-charac-
ter AC-NFAs.

As seen in the graph in Fig. 17, the number of transitions
increase dramatically as the number of NFA levels decreases below
four; the curves are flat as the number of NFA levels increases
above eight. When the number of NFA levels exceeds 15, the
Fig. 17. Compare the rules for different levels of NFA.



132 C.-C. Chen, S.-D. Wang / Microprocessors and Microsystems 39 (2015) 122–134
number of transitions of the k-character hybrid AC-FA equals that
of the k-character AC-NFA. This comparison reveals that the num-
ber of transitions increases almost linearly with k when the num-
ber of NFA levels exceeds eight. Evidently, the advantage of the
hybrid approach increases with k. Although the length of the long-
est keyword is 80, the number of transitions does not increase with
the number of NFA levels above 15. Restated, if the matching
engine is implemented as an AC-NFA, then 80 stages are required.
6.2. Evaluation of implementations

The proposed architectures are evaluated on FPGA and ASIC
devices. The proposed architectures were designed in VHDL code
and then built using Altera’s development tool, Quartus II. The built
architectures were simulated in Modelsim to verify their logic
functions. The devices chosen to evaluate the proposed architec-
tures are Stratix IV FPGA and HardCopy IV ASIC from Altera. The
FPGA device has 424,960 ALUTs and 424,960 registers and the
ASIC device has 9,774,880 HCells.

Since the multi-stage architecture is implemented using deco-
ders and combination logics rather than registers and comparators
[19] and must be rebuilt when the keyword set is changed, it is
only evaluated on FPGA devices. Since the rule data of the config-
urable architecture can be reconfigured when the keyword set is
changed, it is evaluated on both FPGA and ASIC devices. The num-
ber of NFA levels is eight in all of the implementations, the num-
bers of stages are 10, 13 and 17 for k = 1, 4, and 8, respectively.
Moreover, the achievable throughput is obtained by multiplying
the data width by the clock rate.
Table 2
Implementing the multi-stage architecture on FPGA.

k = 1 k = 4 k = 8

Total rules 2813 3756 5013
Used ALUTs 11,741 (3%) 21,460 (5%) 31,258 (7%)
Used registers 132 (<1%) 204 (<1%) 300 (<1%)
Logic utilization (%) 3 6 9
Max. Freq. 83.93 MHz 76.44 MHz 66.6 MHz
Throughput 0.7 Gbps 2.4 Gbps 4.3 Gbps
LE/char 3.81 6.96 10.14

Table 3
Implementing the configurable architecture on FPGA.

Original

k = 1 k = 4 k

Used ALUTs 60,119 77,948 1
(14%) (18%) (

Used registers 27,063 60,921 1
(6%) (14%) (

Logic utilization (%) 24 34 4
Max. freq. (MHz) 34.34 25.97 2
Throughput (Gbps) 0.3 0.8 1

Table 4
Implementing the configurable architecture on ASIC.

Original

k = 1 k = 4 k

Used HCells 389,094 626,943 9
HCell utilization (%) 4 6 1
Max. freq. (MHz) 77.66 70.76 5
Throughput (Gbps) 0.6 2.3 3
To implement multi-stage architecture, 300 keywords are used
in the experiments herein, yielding the results in Table 2. The total
length of the 300 keywords is 3892 characters. Comparing the
results with k = 4 and 8 with that with k = 1 reveals that the
throughputs increase by factors of 3.4 and 6.1, as the numbers of
used ALUTs increase by factors of 1.8 and 2.7, respectively. The
growth rates of the used ALUTs are lower than those of the
throughputs. A comparison of the results also reveals that the max-
imum operating clock rate is degraded as the number of transitions
increases, because the critical path of a priority multiplexer with M
inputs comprises log2M chained multiplexers so the delay of the
priority multiplexers increases with the number of inputs.

Next, the configurable architecture is evaluated on FPGA and
ASIC devices. Each of the implementations involves 512 rule units
for the purpose of verification and evaluation. The pipeline method
of Soewito [20], which incorporates pipeline architecture and mul-
ti-thread operation, is used to increase the throughput in the eval-
uation of the configurable architecture. A two-stage pipeline is
utilized in the evaluation of the configurable architecture.

Table 3 presents the results of implementing the original and
pipeline configurable architectures in FPGAs. The results of imple-
menting the original architecture in FPGAs are elucidated first. The
derived throughputs increase by factors of around 2.7 and 4.3 as
k = 1 increased to k = 4 and 8, respectively. With respect to the
hardware resources, the numbers of used ALUTs increase by factors
of 1.3 and 1.8, and the numbers of used registers increase by fac-
tors of 2.3 and 3.9 as k = 1 is increased to k = 4 and 8, respectively.
Next, the results of implementing the pipeline architecture in
FPGAs are discussed. The derived throughputs increased by factors
of around 3.2 and 5.2 times as k = 1 was increased to k = 4 and 8,
respectively. With respect to the hardware resources, the number
of used ALUTs increased by factors of 1.3 and 1.7, and the number
of used registers increased by factors of 2.1 and 3.4 as k = 1 was
increased to k = 4 and 8, respectively.

Table 4 summarizes the results of implementing the original
and pipeline configurable architectures in ASICs. The results of
implementing the original architecture in ASICs are discussed first.
The derived throughputs increased by factors of around 3.8 and 5.8
as k = 1 was increased to k = 4 and 8, respectively. The number of
used HCells increased by factors of 1.6 and 2.5 as k was increased
to 4 and 8, respectively. Next the results of implementing the pipe-
line architecture in ASICs are as follows. The derived throughputs
2-Stage pipeline

= 8 k = 1 k = 4 k = 8

06,632 59,544 79,033 102,315
25%) (14%) (19%) (24%)
06,532 35,090 72,580 120,749
25%) (8%) (17%) (28%)
8 24 34 47
0.54 74.75 57.95 48.44
.3 0.6 1.9 3.1

2-Stage pipeline

= 8 k = 1 k = 4 k = 8

66,938 383,247 629,855 943,581
0 4 6 10
4.18 172.0 136.46 123.44
.5 1.4 4.4 7.9



Table 5
Comparison of different approaches.

Description Clock
(MHz)

Data width
(bits)

Throughput
(Gbps)

Our multi-stage approach 66.6 64 4.3
Our configurable approach 123 64 7.9
Pao et al. [10] Pipelined imple-

mentation
253 8 2.0

Scarpazza et al. [21] Software
program

3200 64 1.6–40

Tripp [15] Parallel string
matching engine

149 32 4.8

C.-C. Chen, S.-D. Wang / Microprocessors and Microsystems 39 (2015) 122–134 133
increased by factors of around 3.1 and 5.6 as k = 1 was increased to
k = 4 and 8, respectively. Moreover, the number of used HCells
increased by factors of 1.6 and 2.5 as k = 1 is increased to k = 4
and 8, respectively.

In implementation on ASIC, the maximum operating clock rate
with k = 4 is 9% worse than that with k = 1, while the maximum oper-
ating clock rate for k = 8 is 23% worse than that with k = 4. The degra-
dation of the clock rate is much greater for k = 8 perhaps because
that the implementation with k = 8 uses 32-to-1 multiplexers and
1-to-32 demultiplexers, but the implementations with k = 1 and
k = 4 use 16-to-1 multiplexers and 16-to-1 demultiplexers.

Comparing Tables 2 with 3 reveals that the maximum frequen-
cies of the configurable architecture are lower than those of the
multi-stage architecture for implementation on FPGA, perhaps
because the configurable architecture is more complex than the
multi-stage architecture. Furthermore, since the rule matching
function is carried out using decoders with combinational logics
rather than registers and comparators in the implementation of
the multi-stage architecture, the hardware efficiency and achiev-
able clock rate are much higher than in the implementation of
the configurable architecture. In the implementations on both
FPGA and ASIC, when k increases, the hardware utilization is
increased and the maximum operating clock rate is degraded.
The implementations on ASIC have higher clock rates and hard-
ware efficiency. Tables 3 and 4 also reveal that a two-stage pipeline
structure can approximately double the throughput, at the cost of
only a slight increase in the required hardware resources.
6.3. Comparison of different approaches

Table 5 compares various string matching approaches. The per-
formance data for the approaches other than the one presented
herein are taken from the literature. Fairly comparing the
approaches is difficult because they differ substantially.
Nevertheless, this comparison provides insight into the proposed
approach. The approach of Scarpazza et al. [21] is a software imple-
mentation on the IBM Cell/B.E. processor, in which columns Clock
and Data Width represent the operating clock rate and the data
width of the processor. In the other approaches, the columns
Clock and Data Width represent the clock rate and the bits of the
data bus in hardware implementations.

The throughput of the software approach that was presented by
Scarpazza et al. varies from 40 Gbps with fewer than 200 keywords
to 1.6 Gbps with more than 200 keywords. The pipelined architec-
ture that was developed by Pao et al. [10] can operate at a clock
rate of 253 MHz, with a single character processed per cycle and
a throughput of 2.0 Gbps. The method of Tripp [15] can process
four characters in parallel at a clock rate of 149 MHz, achieving a
throughput of 4.8 Gbps. The comparison demonstrates that the
throughput of a hardware string matching accelerator can be mul-
tiplied up by the inspecting multiple characters in parallel.
7. Conclusion

This work develops a novel hybrid approach, based on the AC-
algorithm, for converting an AC-trie into a hybrid AC-FA, which
has both NFA and DFA parts. The hybrid AC-FA is extended into a
k-character hybrid AC-FA, which can process k characters in paral-
lel. A multi-stage architecture for implementing the derived k-
character hybrid AC-FA is developed. The number of the stages
can be predetermined based on the number of levels in the NFA
part and the number of characters to be inspected in parallel.
Consequently, the proposed multi-stage architecture can be made
into a configurable architecture. This configurable architecture can
then be implemented as a stand-alone string-matching device and
its configuration can be updated according to the set of keywords
to be processed.

The evaluation of the number of k-character transitions with
various NFA levels reveals that the number of k-character transi-
tions increases almost linearly with k when the number of levels
in the NFA part is high enough. The results of implementing the
proposed multi-stage architecture in FPGA devices reveal that, as
the number of characters to be inspected in parallel is increased
from one to four and eight, the derived throughput is increased
by factors of 3.4 and 6.1, respectively, whereas the hardware cost
is increased by factors of only 1.8 and 2.7, respectively.
Moreover, the multi-stage architecture with 8-character transi-
tions can be implemented in FPGA at a clock rate of 66.6 MHz with
a throughput of around 4.3 Gbps. The results of implementing the
configurable architecture in ASICs reveal that the derived through-
put is increased by a factor of around 5.8 and the hardware cost is
increased by a factor of around 2.5 as the k = 1 is increased to k = 8.
The configurable architecture with 8-character transitions can be
implemented in ASICs at a clock rate of 54.18 MHz, yielding a
throughput of around 3.5 Gbps. The pipeline scheme enables the
proposed configurable architecture with 8-character transitions
to be implemented at a nearly doubled clock rate of 123.44 MHz,
with a doubled throughput of approximately 7.9 Gbps.

The proposed hybrid AC-FA approach has the advantages of
both the DFA and the NFA approaches. This work also shows that
the proposed multi-character hybrid AC-FA can be realized with
multi-stage architecture. Both high performance and space effi-
ciency can be achieved by combining DFA and NFA approaches.
References

[1] A.V. Aho, M.J. Corasick, Efficient string matching: an aid to bibliographic
search, Commun. ACM 18 (6) (1975) 333–340.

[2] H. Nakahara, T. Sasao, M. Matsuura, A regular expression matching circuit:
decomposed non-deterministic realization with prefix sharing and multi-
character transition, Microprocess. Microsyst. 36 (8) (2012) 644–664.

[3] M. Alicherry, M. Muthuprasanna, V. Kumar, High speed pattern matching for
network IDS/IPS, in: Proceedings of the 2006 14th IEEE International
Conference on Network Protocols, 2006, ICNP ’06, 2006, pp. 187–196.

[4] N. Hua, H. Song, T.V. Lakshman, Variable-stride multi-pattern matching for
scalable deep packet inspection, in: INFOCOM 2009, IEEE, 2009, pp. 415–423.

[5] D. Pao, X. Wang, Multi-stride string searching for high-speed content
inspection, Comput. J. 55 (10) (2012) 1216–1231.

[6] C.-C. Chen, S.-D. Wang, A multi-character transition string matching
architecture based on Aho-Corasick algorithm, Int. J. Innovat. Comput.
Inform. Control (IJICIC) 8 (12) (2012) 8367–8386.

[7] C.-C. Chen, S.-D. Wang, An efficient multicharacter transition string-matching
engine based on the Aho-Corasick algorithm, ACM Trans. Archit. Code Optim.
(TACO) 10 (4) (2013) 25.

[8] N. Tuck, T. Sherwood, B. Calder, G. Varghese, Deterministic memory-efficient
string matching algorithms for intrusion detection, in: INFOCOM 2004,
Twenty-third AnnualJoint Conference of the IEEE Computer and
Communications Societies, vol. 4, 2004, pp. 2628–2639.

[9] X. Zha, S. Sahni, Highly compressed Aho-Corasick automata for efficient
intrusion detection, in: IEEE Symposium on Computers and Communications,
2008, ISCC 2008, 2008, pp. 298–303.

[10] D. Pao, W. Lin, B. Liu, A memory-efficient pipelined implementation of the
Aho-Corasick string-matching algorithm, ACM Trans. Archit. Code Optim. 7 (2)
(2010) 10:1–10:27.

http://refhub.elsevier.com/S0141-9331(15)00004-6/h0005
http://refhub.elsevier.com/S0141-9331(15)00004-6/h0005
http://refhub.elsevier.com/S0141-9331(15)00004-6/h0010
http://refhub.elsevier.com/S0141-9331(15)00004-6/h0010
http://refhub.elsevier.com/S0141-9331(15)00004-6/h0010
http://refhub.elsevier.com/S0141-9331(15)00004-6/h0020
http://refhub.elsevier.com/S0141-9331(15)00004-6/h0020
http://refhub.elsevier.com/S0141-9331(15)00004-6/h0020
http://refhub.elsevier.com/S0141-9331(15)00004-6/h0025
http://refhub.elsevier.com/S0141-9331(15)00004-6/h0025
http://refhub.elsevier.com/S0141-9331(15)00004-6/h0030
http://refhub.elsevier.com/S0141-9331(15)00004-6/h0030
http://refhub.elsevier.com/S0141-9331(15)00004-6/h0030
http://refhub.elsevier.com/S0141-9331(15)00004-6/h0035
http://refhub.elsevier.com/S0141-9331(15)00004-6/h0035
http://refhub.elsevier.com/S0141-9331(15)00004-6/h0035
http://refhub.elsevier.com/S0141-9331(15)00004-6/h0050
http://refhub.elsevier.com/S0141-9331(15)00004-6/h0050
http://refhub.elsevier.com/S0141-9331(15)00004-6/h0050


134 C.-C. Chen, S.-D. Wang / Microprocessors and Microsystems 39 (2015) 122–134
[11] W. Lin, B. Liu, Pipelined parallel ac-based approach for multi-string matching,
in: 14th IEEE International Conference on Parallel and Distributed Systems,
2008. ICPADS ’08, 2008, pp. 665–672.

[12] V. Dimopoulos, I. Papaefstathiou, D. Pnevmatikatos, A memory-efficient
reconfigurable Aho-Corasick FSM implementation for intrusion detection
systems, in: International Conference on Embedded Computer Systems:
Architectures, Modeling and Simulation, 2007. IC-SAMOS 2007, 2007, pp.
186–193.

[13] M. Becchi, P. Crowley, A hybrid finite automaton for practical deep packet
inspection, in: Proceedings of the 2007 ACM CoNEXT Conference, CoNEXT ’07,
ACM, 2007, pp. 1:1–1:12.

[14] Y. Sugawara, M. Inaba, K. Hiraki, Over 10 Gbps string matching mechanism for
multi-stream packet scanning systems, in: Field Programmable Logic and
Application, Lecture Notes in Computer Science, vol. 3203, Springer, Berlin
Heidelberg, 2004, pp. 484–493.

[15] G. Tripp, A parallel string matching engine for use in high speed network
intrusion detection systems, J. Comput. Virol. 2 (1) (2006) 21–34.

[16] V. Rahmanzadeh, M. Ghaznavi-Ghoushchi, A multi-gb/s parallel string
matching engine for intrusion detection systems, in: Adv-ances in Computer
Science and Engineering, Communications in Computer and Information, vol.
6, Science, Berlin Heidelberg, 2009, pp. 847–851.

[17] N. Yamagaki, R. Sidhu, S. Kamiya, High-speed regular expression matching
engine using multi-character NFA, in: International Conference on Field
Programmable Logic and Applications, 2008, FPL 2008, 2008, pp. 131–136.

[18] Snort. https://www.snort.org.
[19] C. Clark, D. Schimmel, Scalable pattern matching for high speed networks, in:

12th Annual IEEE Symposium on Field-Programmable Custom Computing
Machines, 2004, FCCM 2004, 2004, pp. 249–257.

[20] B. Soewito, Packet inspection on programmable hardware, Comput. Eng. Intell.
Syst. 4 (2) (2013) 57–68.

[21] D.P. Scarpazza, O. Villa, F. Petrini, Exact multi-pattern string matching on the
Cell/B.E. processor, in: Proceedings of the 5th Conference on Computing
Frontiers, CF-’08, ACM, 2008, pp. 33–42.
Chien-Chi Chen is a PhD candidate in Department of
Electrical Engineering, National Taiwan University. His
research interests include embedded systems and
reconfigurable architecture.
Sheng-De Wang was born in Taiwan in 1957. He
received the B.S. degree from National Tsing Hua
University, Hsinchu, Taiwan, in 1980, and the M. S. and
the Ph. D. degrees in electrical engineering from
National Taiwan University, Taipei, Taiwan, in 1982 and
1986, respectively. Since 1986 he has been on the fac-
ulty of the department of electrical engineering at
National Taiwan University, Taipei, Taiwan, where he is
currently a professor. From 1995 to 2001, he also served
as the director of computer operating group of com-
puter and information network center, National Taiwan
University. He was a visiting scholar in Department of

Electrical Engineering, University of Washington, Seattle during the academic year
of 1998–1999. From 2001 to 2003, He has been served as the Department Chair of
Department of Electrical Engineering, National Chi Nan University, Puli, Taiwan. His

research interests include embedded systems, reconfigurable computing, and
intelligent systems.

http://refhub.elsevier.com/S0141-9331(15)00004-6/h0070
http://refhub.elsevier.com/S0141-9331(15)00004-6/h0070
http://refhub.elsevier.com/S0141-9331(15)00004-6/h0070
http://refhub.elsevier.com/S0141-9331(15)00004-6/h0070
http://refhub.elsevier.com/S0141-9331(15)00004-6/h0070
http://refhub.elsevier.com/S0141-9331(15)00004-6/h0070
http://refhub.elsevier.com/S0141-9331(15)00004-6/h0075
http://refhub.elsevier.com/S0141-9331(15)00004-6/h0075
http://refhub.elsevier.com/S0141-9331(15)00004-6/h0080
http://refhub.elsevier.com/S0141-9331(15)00004-6/h0080
http://refhub.elsevier.com/S0141-9331(15)00004-6/h0080
http://refhub.elsevier.com/S0141-9331(15)00004-6/h0080
http://refhub.elsevier.com/S0141-9331(15)00004-6/h0080
http://https://www.snort.org
http://refhub.elsevier.com/S0141-9331(15)00004-6/h0100
http://refhub.elsevier.com/S0141-9331(15)00004-6/h0100
http://refhub.elsevier.com/S0141-9331(15)00004-6/h0105
http://refhub.elsevier.com/S0141-9331(15)00004-6/h0105
http://refhub.elsevier.com/S0141-9331(15)00004-6/h0105
http://refhub.elsevier.com/S0141-9331(15)00004-6/h0105

	A hybrid multiple-character transition finite-automaton for string matching engine
	1 Introduction
	2 Related work
	3 Aho-Corasick algorithm and hybrid finite automaton
	3.1 Aho-Corasick algorithm
	3.2 Hybrid AC-FA
	3.3 Matching operations
	3.4 Implementation of hybrid AC-FA

	4 Multi-character hybrid AC-FA
	4.1 Derivation of multi-character transitions
	4.2 Implementation of multi-character hybrid AC-FA
	4.3 Matching example

	5 Configurable string-matching architecture
	5.1 Rule unit
	5.2 State and output circuits

	6 Evaluation and discussion
	6.1 Transitions versus NFA levels
	6.2 Evaluation of implementations
	6.3 Comparison of different approaches

	7 Conclusion
	References


